Step |
Hyp |
Ref |
Expression |
1 |
|
3at.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
3at.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
3at.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ) |
5 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
6 |
|
simpl22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → 𝑃 ≠ 𝑈 ) |
7 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) |
8 |
6 7
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ) |
9 |
|
simpl23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) |
10 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
11 |
1 2 3
|
3atlem2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
12 |
4 5 8 9 10 11
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
13 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ) |
14 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
15 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) |
16 |
|
simpl23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) |
17 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
18 |
1 2 3
|
3atlem1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
19 |
13 14 15 16 17 18
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
20 |
12 19
|
pm2.61dan |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |