Metamath Proof Explorer


Theorem simpl21

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 24-Jun-2022)

Ref Expression
Assertion simpl21 ( ( ( 𝜃 ∧ ( 𝜑𝜓𝜒 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 simpl1 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜂 ) → 𝜑 )
2 1 3ad2antl2 ( ( ( 𝜃 ∧ ( 𝜑𝜓𝜒 ) ∧ 𝜏 ) ∧ 𝜂 ) → 𝜑 )