Step |
Hyp |
Ref |
Expression |
1 |
|
3at.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
3at.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
3at.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
5 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝐾 ∈ HL ) |
6 |
5
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝐾 ∈ Lat ) |
7 |
|
simp121 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑃 ∈ 𝐴 ) |
8 |
|
simp122 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑄 ∈ 𝐴 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
9 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
11 |
5 7 8 10
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
12 |
|
simp123 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑅 ∈ 𝐴 ) |
13 |
9 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
14 |
12 13
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
15 |
|
simp131 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑆 ∈ 𝐴 ) |
16 |
|
simp132 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑇 ∈ 𝐴 ) |
17 |
9 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
5 15 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
|
simp133 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑈 ∈ 𝐴 ) |
20 |
9 3
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
22 |
9 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
6 18 21 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
9 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∧ 𝑅 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ) |
25 |
6 11 14 23 24
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∧ 𝑅 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ) |
26 |
4 25
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∧ 𝑅 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ) |
27 |
26
|
simprd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑅 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
28 |
2 3
|
hlatjass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) = ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) |
29 |
5 15 16 19 28
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) = ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) |
30 |
|
simp22r |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) |
31 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑃 ≠ 𝑈 ) |
32 |
1 2 3
|
hlatexchb2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑈 ) → ( 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ↔ ( 𝑃 ∨ 𝑈 ) = ( 𝑇 ∨ 𝑈 ) ) ) |
33 |
5 7 16 19 31 32
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ↔ ( 𝑃 ∨ 𝑈 ) = ( 𝑇 ∨ 𝑈 ) ) ) |
34 |
30 33
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ 𝑈 ) = ( 𝑇 ∨ 𝑈 ) ) |
35 |
34
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑆 ∨ ( 𝑃 ∨ 𝑈 ) ) = ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) |
36 |
29 35
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) = ( 𝑆 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
37 |
2 3
|
hlatjass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) = ( 𝑃 ∨ ( 𝑄 ∨ 𝑈 ) ) ) |
38 |
5 7 8 19 37
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) = ( 𝑃 ∨ ( 𝑄 ∨ 𝑈 ) ) ) |
39 |
2 3
|
hlatj12 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( 𝑄 ∨ 𝑈 ) ) = ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
40 |
5 7 8 19 39
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ ( 𝑄 ∨ 𝑈 ) ) = ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
41 |
2 3
|
hlatj32 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑃 ∨ 𝑅 ) ∨ 𝑄 ) ) |
42 |
5 7 8 12 41
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑃 ∨ 𝑅 ) ∨ 𝑄 ) ) |
43 |
4 42 29
|
3brtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑅 ) ∨ 𝑄 ) ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) |
44 |
9 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
45 |
5 7 12 44
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
46 |
9 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
47 |
8 46
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
48 |
9 3
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
49 |
15 48
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
50 |
9 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
51 |
5 16 19 50
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
52 |
9 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
53 |
6 49 51 52
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
54 |
9 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑅 ) ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ∧ 𝑄 ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) ↔ ( ( 𝑃 ∨ 𝑅 ) ∨ 𝑄 ) ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) ) |
55 |
6 45 47 53 54
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( ( 𝑃 ∨ 𝑅 ) ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ∧ 𝑄 ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) ↔ ( ( 𝑃 ∨ 𝑅 ) ∨ 𝑄 ) ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) ) |
56 |
43 55
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑅 ) ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ∧ 𝑄 ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) ) |
57 |
56
|
simprd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑄 ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) |
58 |
57 35
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑄 ≤ ( 𝑆 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
59 |
9 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
60 |
5 7 19 59
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
61 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) |
62 |
9 1 2 3
|
hlexchb2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) → ( 𝑄 ≤ ( 𝑆 ∨ ( 𝑃 ∨ 𝑈 ) ) ↔ ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) = ( 𝑆 ∨ ( 𝑃 ∨ 𝑈 ) ) ) ) |
63 |
5 8 15 60 61 62
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑄 ≤ ( 𝑆 ∨ ( 𝑃 ∨ 𝑈 ) ) ↔ ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) = ( 𝑆 ∨ ( 𝑃 ∨ 𝑈 ) ) ) ) |
64 |
58 63
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) = ( 𝑆 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
65 |
38 40 64
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) = ( 𝑆 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
66 |
36 65
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) ) |
67 |
27 66
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) ) |
68 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
69 |
9 1 2 3
|
hlexchb1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) ) ) |
70 |
5 12 19 11 68 69
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) ) ) |
71 |
67 70
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑈 ) ) |
72 |
71 66
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑃 ≠ 𝑈 ∧ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |