Metamath Proof Explorer


Theorem hllatd

Description: Deduction form of hllat . A Hilbert lattice is a lattice. (Contributed by BJ, 14-Aug-2022)

Ref Expression
Hypothesis hllatd.1 ( 𝜑𝐾 ∈ HL )
Assertion hllatd ( 𝜑𝐾 ∈ Lat )

Proof

Step Hyp Ref Expression
1 hllatd.1 ( 𝜑𝐾 ∈ HL )
2 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
3 1 2 syl ( 𝜑𝐾 ∈ Lat )