Metamath Proof Explorer


Theorem latjcl

Description: Closure of join operation in a lattice. ( chjcom analog.) (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latjcl.b 𝐵 = ( Base ‘ 𝐾 )
latjcl.j = ( join ‘ 𝐾 )
Assertion latjcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 latjcl.b 𝐵 = ( Base ‘ 𝐾 )
2 latjcl.j = ( join ‘ 𝐾 )
3 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
4 1 2 3 latlem ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) 𝑌 ) ∈ 𝐵 ) )
5 4 simpld ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )