Metamath Proof Explorer


Theorem latjcl

Description: Closure of join operation in a lattice. ( chjcom analog.) (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latjcl.b
|- B = ( Base ` K )
latjcl.j
|- .\/ = ( join ` K )
Assertion latjcl
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B )

Proof

Step Hyp Ref Expression
1 latjcl.b
 |-  B = ( Base ` K )
2 latjcl.j
 |-  .\/ = ( join ` K )
3 eqid
 |-  ( meet ` K ) = ( meet ` K )
4 1 2 3 latlem
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .\/ Y ) e. B /\ ( X ( meet ` K ) Y ) e. B ) )
5 4 simpld
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B )