Metamath Proof Explorer
Description: Closure of join operation. Frequently-used special case of latjcl for
atoms. (Contributed by NM, 15-Jun-2012)
|
|
Ref |
Expression |
|
Hypotheses |
hlatjcl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
hlatjcl.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
|
|
hlatjcl.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
|
Assertion |
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hlatjcl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
hlatjcl.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
hlatjcl.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
5 |
1 3
|
atbase |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ 𝐵 ) |
6 |
1 3
|
atbase |
⊢ ( 𝑌 ∈ 𝐴 → 𝑌 ∈ 𝐵 ) |
7 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
8 |
4 5 6 7
|
syl3an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |