Metamath Proof Explorer


Theorem hlatjcl

Description: Closure of join operation. Frequently-used special case of latjcl for atoms. (Contributed by NM, 15-Jun-2012)

Ref Expression
Hypotheses hlatjcl.b 𝐵 = ( Base ‘ 𝐾 )
hlatjcl.j = ( join ‘ 𝐾 )
hlatjcl.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 hlatjcl.b 𝐵 = ( Base ‘ 𝐾 )
2 hlatjcl.j = ( join ‘ 𝐾 )
3 hlatjcl.a 𝐴 = ( Atoms ‘ 𝐾 )
4 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
5 1 3 atbase ( 𝑋𝐴𝑋𝐵 )
6 1 3 atbase ( 𝑌𝐴𝑌𝐵 )
7 1 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
8 4 5 6 7 syl3an ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )