Metamath Proof Explorer


Theorem atbase

Description: An atom is a member of the lattice base set (i.e. a lattice element). ( atelch analog.) (Contributed by NM, 10-Oct-2011)

Ref Expression
Hypotheses atombase.b 𝐵 = ( Base ‘ 𝐾 )
atombase.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atbase ( 𝑃𝐴𝑃𝐵 )

Proof

Step Hyp Ref Expression
1 atombase.b 𝐵 = ( Base ‘ 𝐾 )
2 atombase.a 𝐴 = ( Atoms ‘ 𝐾 )
3 n0i ( 𝑃𝐴 → ¬ 𝐴 = ∅ )
4 2 eqeq1i ( 𝐴 = ∅ ↔ ( Atoms ‘ 𝐾 ) = ∅ )
5 3 4 sylnib ( 𝑃𝐴 → ¬ ( Atoms ‘ 𝐾 ) = ∅ )
6 fvprc ( ¬ 𝐾 ∈ V → ( Atoms ‘ 𝐾 ) = ∅ )
7 5 6 nsyl2 ( 𝑃𝐴𝐾 ∈ V )
8 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
9 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
10 1 8 9 2 isat ( 𝐾 ∈ V → ( 𝑃𝐴 ↔ ( 𝑃𝐵 ∧ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ) ) )
11 10 simprbda ( ( 𝐾 ∈ V ∧ 𝑃𝐴 ) → 𝑃𝐵 )
12 7 11 mpancom ( 𝑃𝐴𝑃𝐵 )