Metamath Proof Explorer


Theorem atssbase

Description: The set of atoms is a subset of the base set. ( atssch analog.) (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses atombase.b 𝐵 = ( Base ‘ 𝐾 )
atombase.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atssbase 𝐴𝐵

Proof

Step Hyp Ref Expression
1 atombase.b 𝐵 = ( Base ‘ 𝐾 )
2 atombase.a 𝐴 = ( Atoms ‘ 𝐾 )
3 1 2 atbase ( 𝑥𝐴𝑥𝐵 )
4 3 ssriv 𝐴𝐵