Metamath Proof Explorer
Description: The set of atoms is a subset of the base set. ( atssch analog.)
(Contributed by NM, 21-Oct-2011)
|
|
Ref |
Expression |
|
Hypotheses |
atombase.b |
|- B = ( Base ` K ) |
|
|
atombase.a |
|- A = ( Atoms ` K ) |
|
Assertion |
atssbase |
|- A C_ B |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
atombase.b |
|- B = ( Base ` K ) |
2 |
|
atombase.a |
|- A = ( Atoms ` K ) |
3 |
1 2
|
atbase |
|- ( x e. A -> x e. B ) |
4 |
3
|
ssriv |
|- A C_ B |