Step |
Hyp |
Ref |
Expression |
1 |
|
atombase.b |
|- B = ( Base ` K ) |
2 |
|
atombase.a |
|- A = ( Atoms ` K ) |
3 |
|
n0i |
|- ( P e. A -> -. A = (/) ) |
4 |
2
|
eqeq1i |
|- ( A = (/) <-> ( Atoms ` K ) = (/) ) |
5 |
3 4
|
sylnib |
|- ( P e. A -> -. ( Atoms ` K ) = (/) ) |
6 |
|
fvprc |
|- ( -. K e. _V -> ( Atoms ` K ) = (/) ) |
7 |
5 6
|
nsyl2 |
|- ( P e. A -> K e. _V ) |
8 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
9 |
|
eqid |
|- ( |
10 |
1 8 9 2
|
isat |
|- ( K e. _V -> ( P e. A <-> ( P e. B /\ ( 0. ` K ) ( |
11 |
10
|
simprbda |
|- ( ( K e. _V /\ P e. A ) -> P e. B ) |
12 |
7 11
|
mpancom |
|- ( P e. A -> P e. B ) |