Metamath Proof Explorer
		
		
		
		Description:  A negated syllogism inference.  (Contributed by NM, 26-Jun-1994)
       (Proof shortened by Wolf Lammen, 14-Nov-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nsyl2.1 | |- ( ph -> -. ps ) | 
					
						|  |  | nsyl2.2 | |- ( -. ch -> ps ) | 
				
					|  | Assertion | nsyl2 | |- ( ph -> ch ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nsyl2.1 |  |-  ( ph -> -. ps ) | 
						
							| 2 |  | nsyl2.2 |  |-  ( -. ch -> ps ) | 
						
							| 3 | 1 2 | nsyl3 |  |-  ( -. ch -> -. ph ) | 
						
							| 4 | 3 | con4i |  |-  ( ph -> ch ) |