Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994) (Proof shortened by Wolf Lammen, 14-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nsyl2.1 | ⊢ ( 𝜑 → ¬ 𝜓 ) | |
nsyl2.2 | ⊢ ( ¬ 𝜒 → 𝜓 ) | ||
Assertion | nsyl2 | ⊢ ( 𝜑 → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl2.1 | ⊢ ( 𝜑 → ¬ 𝜓 ) | |
2 | nsyl2.2 | ⊢ ( ¬ 𝜒 → 𝜓 ) | |
3 | 1 2 | nsyl3 | ⊢ ( ¬ 𝜒 → ¬ 𝜑 ) |
4 | 3 | con4i | ⊢ ( 𝜑 → 𝜒 ) |