Metamath Proof Explorer


Theorem nsyl2

Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994) (Proof shortened by Wolf Lammen, 14-Nov-2023)

Ref Expression
Hypotheses nsyl2.1 ( 𝜑 → ¬ 𝜓 )
nsyl2.2 ( ¬ 𝜒𝜓 )
Assertion nsyl2 ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 nsyl2.1 ( 𝜑 → ¬ 𝜓 )
2 nsyl2.2 ( ¬ 𝜒𝜓 )
3 1 2 nsyl3 ( ¬ 𝜒 → ¬ 𝜑 )
4 3 con4i ( 𝜑𝜒 )