Metamath Proof Explorer


Theorem atbase

Description: An atom is a member of the lattice base set (i.e. a lattice element). ( atelch analog.) (Contributed by NM, 10-Oct-2011)

Ref Expression
Hypotheses atombase.b B=BaseK
atombase.a A=AtomsK
Assertion atbase PAPB

Proof

Step Hyp Ref Expression
1 atombase.b B=BaseK
2 atombase.a A=AtomsK
3 n0i PA¬A=
4 2 eqeq1i A=AtomsK=
5 3 4 sylnib PA¬AtomsK=
6 fvprc ¬KVAtomsK=
7 5 6 nsyl2 PAKV
8 eqid 0.K=0.K
9 eqid K=K
10 1 8 9 2 isat KVPAPB0.KKP
11 10 simprbda KVPAPB
12 7 11 mpancom PAPB