Metamath Proof Explorer


Theorem atbase

Description: An atom is a member of the lattice base set (i.e. a lattice element). ( atelch analog.) (Contributed by NM, 10-Oct-2011)

Ref Expression
Hypotheses atombase.b B = Base K
atombase.a A = Atoms K
Assertion atbase P A P B

Proof

Step Hyp Ref Expression
1 atombase.b B = Base K
2 atombase.a A = Atoms K
3 n0i P A ¬ A =
4 2 eqeq1i A = Atoms K =
5 3 4 sylnib P A ¬ Atoms K =
6 fvprc ¬ K V Atoms K =
7 5 6 nsyl2 P A K V
8 eqid 0. K = 0. K
9 eqid K = K
10 1 8 9 2 isat K V P A P B 0. K K P
11 10 simprbda K V P A P B
12 7 11 mpancom P A P B