Metamath Proof Explorer


Theorem isat

Description: The predicate "is an atom". ( ela analog.) (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses isatom.b B=BaseK
isatom.z 0˙=0.K
isatom.c C=K
isatom.a A=AtomsK
Assertion isat KDPAPB0˙CP

Proof

Step Hyp Ref Expression
1 isatom.b B=BaseK
2 isatom.z 0˙=0.K
3 isatom.c C=K
4 isatom.a A=AtomsK
5 1 2 3 4 pats KDA=xB|0˙Cx
6 5 eleq2d KDPAPxB|0˙Cx
7 breq2 x=P0˙Cx0˙CP
8 7 elrab PxB|0˙CxPB0˙CP
9 6 8 bitrdi KDPAPB0˙CP