| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ltat.z |
|- .0. = ( 0. ` K ) |
| 2 |
|
0ltat.s |
|- .< = ( lt ` K ) |
| 3 |
|
0ltat.a |
|- A = ( Atoms ` K ) |
| 4 |
|
simpl |
|- ( ( K e. OP /\ P e. A ) -> K e. OP ) |
| 5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 6 |
5 1
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
| 7 |
6
|
adantr |
|- ( ( K e. OP /\ P e. A ) -> .0. e. ( Base ` K ) ) |
| 8 |
5 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 9 |
8
|
adantl |
|- ( ( K e. OP /\ P e. A ) -> P e. ( Base ` K ) ) |
| 10 |
|
eqid |
|- ( |
| 11 |
1 10 3
|
atcvr0 |
|- ( ( K e. OP /\ P e. A ) -> .0. ( |
| 12 |
5 2 10
|
cvrlt |
|- ( ( ( K e. OP /\ .0. e. ( Base ` K ) /\ P e. ( Base ` K ) ) /\ .0. ( .0. .< P ) |
| 13 |
4 7 9 11 12
|
syl31anc |
|- ( ( K e. OP /\ P e. A ) -> .0. .< P ) |