Step |
Hyp |
Ref |
Expression |
1 |
|
0ltat.z |
|- .0. = ( 0. ` K ) |
2 |
|
0ltat.s |
|- .< = ( lt ` K ) |
3 |
|
0ltat.a |
|- A = ( Atoms ` K ) |
4 |
|
simpl |
|- ( ( K e. OP /\ P e. A ) -> K e. OP ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
5 1
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
7 |
6
|
adantr |
|- ( ( K e. OP /\ P e. A ) -> .0. e. ( Base ` K ) ) |
8 |
5 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
9 |
8
|
adantl |
|- ( ( K e. OP /\ P e. A ) -> P e. ( Base ` K ) ) |
10 |
|
eqid |
|- ( |
11 |
1 10 3
|
atcvr0 |
|- ( ( K e. OP /\ P e. A ) -> .0. ( |
12 |
5 2 10
|
cvrlt |
|- ( ( ( K e. OP /\ .0. e. ( Base ` K ) /\ P e. ( Base ` K ) ) /\ .0. ( .0. .< P ) |
13 |
4 7 9 11 12
|
syl31anc |
|- ( ( K e. OP /\ P e. A ) -> .0. .< P ) |