Metamath Proof Explorer


Theorem 0ltat

Description: An atom is greater than zero. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses 0ltat.z 0 ˙ = 0. K
0ltat.s < ˙ = < K
0ltat.a A = Atoms K
Assertion 0ltat K OP P A 0 ˙ < ˙ P

Proof

Step Hyp Ref Expression
1 0ltat.z 0 ˙ = 0. K
2 0ltat.s < ˙ = < K
3 0ltat.a A = Atoms K
4 simpl K OP P A K OP
5 eqid Base K = Base K
6 5 1 op0cl K OP 0 ˙ Base K
7 6 adantr K OP P A 0 ˙ Base K
8 5 3 atbase P A P Base K
9 8 adantl K OP P A P Base K
10 eqid K = K
11 1 10 3 atcvr0 K OP P A 0 ˙ K P
12 5 2 10 cvrlt K OP 0 ˙ Base K P Base K 0 ˙ K P 0 ˙ < ˙ P
13 4 7 9 11 12 syl31anc K OP P A 0 ˙ < ˙ P