Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atomic lattices with covering property
0ltat
Next ⟩
leatb
Metamath Proof Explorer
Ascii
Unicode
Theorem
0ltat
Description:
An atom is greater than zero.
(Contributed by
NM
, 4-Jul-2012)
Ref
Expression
Hypotheses
0ltat.z
⊢
0
˙
=
0.
⁡
K
0ltat.s
⊢
<
˙
=
<
K
0ltat.a
⊢
A
=
Atoms
⁡
K
Assertion
0ltat
⊢
K
∈
OP
∧
P
∈
A
→
0
˙
<
˙
P
Proof
Step
Hyp
Ref
Expression
1
0ltat.z
⊢
0
˙
=
0.
⁡
K
2
0ltat.s
⊢
<
˙
=
<
K
3
0ltat.a
⊢
A
=
Atoms
⁡
K
4
simpl
⊢
K
∈
OP
∧
P
∈
A
→
K
∈
OP
5
eqid
⊢
Base
K
=
Base
K
6
5
1
op0cl
⊢
K
∈
OP
→
0
˙
∈
Base
K
7
6
adantr
⊢
K
∈
OP
∧
P
∈
A
→
0
˙
∈
Base
K
8
5
3
atbase
⊢
P
∈
A
→
P
∈
Base
K
9
8
adantl
⊢
K
∈
OP
∧
P
∈
A
→
P
∈
Base
K
10
eqid
⊢
⋖
K
=
⋖
K
11
1
10
3
atcvr0
⊢
K
∈
OP
∧
P
∈
A
→
0
˙
⋖
K
P
12
5
2
10
cvrlt
⊢
K
∈
OP
∧
0
˙
∈
Base
K
∧
P
∈
Base
K
∧
0
˙
⋖
K
P
→
0
˙
<
˙
P
13
4
7
9
11
12
syl31anc
⊢
K
∈
OP
∧
P
∈
A
→
0
˙
<
˙
P