Metamath Proof Explorer


Theorem hlatjcl

Description: Closure of join operation. Frequently-used special case of latjcl for atoms. (Contributed by NM, 15-Jun-2012)

Ref Expression
Hypotheses hlatjcl.b B=BaseK
hlatjcl.j ˙=joinK
hlatjcl.a A=AtomsK
Assertion hlatjcl KHLXAYAX˙YB

Proof

Step Hyp Ref Expression
1 hlatjcl.b B=BaseK
2 hlatjcl.j ˙=joinK
3 hlatjcl.a A=AtomsK
4 hllat KHLKLat
5 1 3 atbase XAXB
6 1 3 atbase YAYB
7 1 2 latjcl KLatXBYBX˙YB
8 4 5 6 7 syl3an KHLXAYAX˙YB