Metamath Proof Explorer


Theorem hlatjcom

Description: Commutatitivity of join operation. Frequently-used special case of latjcom for atoms. (Contributed by NM, 15-Jun-2012)

Ref Expression
Hypotheses hlatjcom.j ˙ = join K
hlatjcom.a A = Atoms K
Assertion hlatjcom K HL X A Y A X ˙ Y = Y ˙ X

Proof

Step Hyp Ref Expression
1 hlatjcom.j ˙ = join K
2 hlatjcom.a A = Atoms K
3 hllat K HL K Lat
4 eqid Base K = Base K
5 4 2 atbase X A X Base K
6 4 2 atbase Y A Y Base K
7 4 1 latjcom K Lat X Base K Y Base K X ˙ Y = Y ˙ X
8 3 5 6 7 syl3an K HL X A Y A X ˙ Y = Y ˙ X