Metamath Proof Explorer


Theorem latjcom

Description: The join of a lattice commutes. ( chjcom analog.) (Contributed by NM, 16-Sep-2011)

Ref Expression
Hypotheses latjcom.b B=BaseK
latjcom.j ˙=joinK
Assertion latjcom KLatXBYBX˙Y=Y˙X

Proof

Step Hyp Ref Expression
1 latjcom.b B=BaseK
2 latjcom.j ˙=joinK
3 opelxpi XBYBXYB×B
4 3 3adant1 KLatXBYBXYB×B
5 eqid meetK=meetK
6 1 2 5 islat KLatKPosetdom˙=B×BdommeetK=B×B
7 simprl KPosetdom˙=B×BdommeetK=B×Bdom˙=B×B
8 6 7 sylbi KLatdom˙=B×B
9 8 3ad2ant1 KLatXBYBdom˙=B×B
10 4 9 eleqtrrd KLatXBYBXYdom˙
11 opelxpi YBXBYXB×B
12 11 ancoms XBYBYXB×B
13 12 3adant1 KLatXBYBYXB×B
14 13 9 eleqtrrd KLatXBYBYXdom˙
15 10 14 jca KLatXBYBXYdom˙YXdom˙
16 latpos KLatKPoset
17 1 2 joincom KPosetXBYBXYdom˙YXdom˙X˙Y=Y˙X
18 16 17 syl3anl1 KLatXBYBXYdom˙YXdom˙X˙Y=Y˙X
19 15 18 mpdan KLatXBYBX˙Y=Y˙X