Metamath Proof Explorer


Theorem joincom

Description: The join of a poset is commutative. (The antecedent <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ i.e., "the joins exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses joincom.b B = Base K
joincom.j ˙ = join K
Assertion joincom K Poset X B Y B X Y dom ˙ Y X dom ˙ X ˙ Y = Y ˙ X

Proof

Step Hyp Ref Expression
1 joincom.b B = Base K
2 joincom.j ˙ = join K
3 1 2 joincomALT K Poset X B Y B X ˙ Y = Y ˙ X
4 3 adantr K Poset X B Y B X Y dom ˙ Y X dom ˙ X ˙ Y = Y ˙ X