Metamath Proof Explorer


Definition df-poset

Description: Define the class of partially ordered sets (posets). A poset is a set equipped with a partial order, that is, a binary relation which is reflexive, antisymmetric, and transitive. Unlike a total order, in a partial order there may be pairs of elements where neither precedes the other. Definition of poset in Crawley p. 1. Note that Crawley-Dilworth require that a poset base set be nonempty, but we follow the convention of most authors who don't make this a requirement.

In our formalism of extensible structures, the base set of a poset f is denoted by ( Basef ) and its partial order by ( lef ) (for "less than or equal to"). The quantifiers E. b E. r provide a notational shorthand to allow to refer to the base and ordering relation as b and r in the definition rather than having to repeat ( Basef ) and ( lef ) throughout. These quantifiers can be eliminated with ceqsex2v and related theorems. (Contributed by NM, 18-Oct-2012)

Ref Expression
Assertion df-poset Poset=f|brb=Basefr=fxbybzbxrxxryyrxx=yxryyrzxrz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpo classPoset
1 vf setvarf
2 vb setvarb
3 vr setvarr
4 2 cv setvarb
5 cbs classBase
6 1 cv setvarf
7 6 5 cfv classBasef
8 4 7 wceq wffb=Basef
9 3 cv setvarr
10 cple classle
11 6 10 cfv classf
12 9 11 wceq wffr=f
13 vx setvarx
14 vy setvary
15 vz setvarz
16 13 cv setvarx
17 16 16 9 wbr wffxrx
18 14 cv setvary
19 16 18 9 wbr wffxry
20 18 16 9 wbr wffyrx
21 19 20 wa wffxryyrx
22 16 18 wceq wffx=y
23 21 22 wi wffxryyrxx=y
24 15 cv setvarz
25 18 24 9 wbr wffyrz
26 19 25 wa wffxryyrz
27 16 24 9 wbr wffxrz
28 26 27 wi wffxryyrzxrz
29 17 23 28 w3a wffxrxxryyrxx=yxryyrzxrz
30 29 15 4 wral wffzbxrxxryyrxx=yxryyrzxrz
31 30 14 4 wral wffybzbxrxxryyrxx=yxryyrzxrz
32 31 13 4 wral wffxbybzbxrxxryyrxx=yxryyrzxrz
33 8 12 32 w3a wffb=Basefr=fxbybzbxrxxryyrxx=yxryyrzxrz
34 33 3 wex wffrb=Basefr=fxbybzbxrxxryyrxx=yxryyrzxrz
35 34 2 wex wffbrb=Basefr=fxbybzbxrxxryyrxx=yxryyrzxrz
36 35 1 cab classf|brb=Basefr=fxbybzbxrxxryyrxx=yxryyrzxrz
37 0 36 wceq wffPoset=f|brb=Basefr=fxbybzbxrxxryyrxx=yxryyrzxrz