Metamath Proof Explorer


Theorem meetcomALT

Description: The meet of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses meetcom.b B = Base K
meetcom.m ˙ = meet K
Assertion meetcomALT K V X B Y B X ˙ Y = Y ˙ X

Proof

Step Hyp Ref Expression
1 meetcom.b B = Base K
2 meetcom.m ˙ = meet K
3 prcom Y X = X Y
4 3 fveq2i glb K Y X = glb K X Y
5 4 a1i K V X B Y B glb K Y X = glb K X Y
6 eqid glb K = glb K
7 simp1 K V X B Y B K V
8 simp3 K V X B Y B Y B
9 simp2 K V X B Y B X B
10 6 2 7 8 9 meetval K V X B Y B Y ˙ X = glb K Y X
11 6 2 7 9 8 meetval K V X B Y B X ˙ Y = glb K X Y
12 5 10 11 3eqtr4rd K V X B Y B X ˙ Y = Y ˙ X