Metamath Proof Explorer


Theorem meetcomALT

Description: The meet of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses meetcom.b
|- B = ( Base ` K )
meetcom.m
|- ./\ = ( meet ` K )
Assertion meetcomALT
|- ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) )

Proof

Step Hyp Ref Expression
1 meetcom.b
 |-  B = ( Base ` K )
2 meetcom.m
 |-  ./\ = ( meet ` K )
3 prcom
 |-  { Y , X } = { X , Y }
4 3 fveq2i
 |-  ( ( glb ` K ) ` { Y , X } ) = ( ( glb ` K ) ` { X , Y } )
5 4 a1i
 |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> ( ( glb ` K ) ` { Y , X } ) = ( ( glb ` K ) ` { X , Y } ) )
6 eqid
 |-  ( glb ` K ) = ( glb ` K )
7 simp1
 |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> K e. V )
8 simp3
 |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> Y e. B )
9 simp2
 |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> X e. B )
10 6 2 7 8 9 meetval
 |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> ( Y ./\ X ) = ( ( glb ` K ) ` { Y , X } ) )
11 6 2 7 9 8 meetval
 |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( ( glb ` K ) ` { X , Y } ) )
12 5 10 11 3eqtr4rd
 |-  ( ( K e. V /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) )