Metamath Proof Explorer


Theorem meetcom

Description: The meet of a poset is commutative. (The antecedent <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ i.e., "the meets exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 17-Sep-2011) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetcom.b
|- B = ( Base ` K )
meetcom.m
|- ./\ = ( meet ` K )
Assertion meetcom
|- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) -> ( X ./\ Y ) = ( Y ./\ X ) )

Proof

Step Hyp Ref Expression
1 meetcom.b
 |-  B = ( Base ` K )
2 meetcom.m
 |-  ./\ = ( meet ` K )
3 1 2 meetcomALT
 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) )
4 3 adantr
 |-  ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) -> ( X ./\ Y ) = ( Y ./\ X ) )