Metamath Proof Explorer


Theorem meetcom

Description: The meet of a poset is commutative. (The antecedent <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ i.e., "the meets exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 17-Sep-2011) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetcom.b B = Base K
meetcom.m ˙ = meet K
Assertion meetcom K Poset X B Y B X Y dom ˙ Y X dom ˙ X ˙ Y = Y ˙ X

Proof

Step Hyp Ref Expression
1 meetcom.b B = Base K
2 meetcom.m ˙ = meet K
3 1 2 meetcomALT K Poset X B Y B X ˙ Y = Y ˙ X
4 3 adantr K Poset X B Y B X Y dom ˙ Y X dom ˙ X ˙ Y = Y ˙ X