Metamath Proof Explorer


Theorem joincomALT

Description: The join of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 16-Sep-2011) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses joincom.b B = Base K
joincom.j ˙ = join K
Assertion joincomALT K V X B Y B X ˙ Y = Y ˙ X

Proof

Step Hyp Ref Expression
1 joincom.b B = Base K
2 joincom.j ˙ = join K
3 prcom Y X = X Y
4 3 fveq2i lub K Y X = lub K X Y
5 4 a1i K V X B Y B lub K Y X = lub K X Y
6 eqid lub K = lub K
7 simp1 K V X B Y B K V
8 simp3 K V X B Y B Y B
9 simp2 K V X B Y B X B
10 6 2 7 8 9 joinval K V X B Y B Y ˙ X = lub K Y X
11 6 2 7 9 8 joinval K V X B Y B X ˙ Y = lub K X Y
12 5 10 11 3eqtr4rd K V X B Y B X ˙ Y = Y ˙ X