Metamath Proof Explorer


Theorem joinval

Description: Join value. Since both sides evaluate to (/) when they don't exist, for convenience we drop the { X , Y } e. dom U requirement. (Contributed by NM, 9-Sep-2018)

Ref Expression
Hypotheses joindef.u U=lubK
joindef.j ˙=joinK
joindef.k φKV
joindef.x φXW
joindef.y φYZ
Assertion joinval φX˙Y=UXY

Proof

Step Hyp Ref Expression
1 joindef.u U=lubK
2 joindef.j ˙=joinK
3 joindef.k φKV
4 joindef.x φXW
5 joindef.y φYZ
6 1 2 joinfval2 KV˙=xyz|xydomUz=Uxy
7 3 6 syl φ˙=xyz|xydomUz=Uxy
8 7 oveqd φX˙Y=Xxyz|xydomUz=UxyY
9 8 adantr φXYdomUX˙Y=Xxyz|xydomUz=UxyY
10 simpr φXYdomUXYdomU
11 eqidd φXYdomUUXY=UXY
12 fvexd φUXYV
13 preq12 x=Xy=Yxy=XY
14 13 eleq1d x=Xy=YxydomUXYdomU
15 14 3adant3 x=Xy=Yz=UXYxydomUXYdomU
16 simp3 x=Xy=Yz=UXYz=UXY
17 13 fveq2d x=Xy=YUxy=UXY
18 17 3adant3 x=Xy=Yz=UXYUxy=UXY
19 16 18 eqeq12d x=Xy=Yz=UXYz=UxyUXY=UXY
20 15 19 anbi12d x=Xy=Yz=UXYxydomUz=UxyXYdomUUXY=UXY
21 moeq *zz=Uxy
22 21 moani *zxydomUz=Uxy
23 eqid xyz|xydomUz=Uxy=xyz|xydomUz=Uxy
24 20 22 23 ovigg XWYZUXYVXYdomUUXY=UXYXxyz|xydomUz=UxyY=UXY
25 4 5 12 24 syl3anc φXYdomUUXY=UXYXxyz|xydomUz=UxyY=UXY
26 25 adantr φXYdomUXYdomUUXY=UXYXxyz|xydomUz=UxyY=UXY
27 10 11 26 mp2and φXYdomUXxyz|xydomUz=UxyY=UXY
28 9 27 eqtrd φXYdomUX˙Y=UXY
29 1 2 3 4 5 joindef φXYdom˙XYdomU
30 29 notbid φ¬XYdom˙¬XYdomU
31 df-ov X˙Y=˙XY
32 ndmfv ¬XYdom˙˙XY=
33 31 32 eqtrid ¬XYdom˙X˙Y=
34 30 33 syl6bir φ¬XYdomUX˙Y=
35 34 imp φ¬XYdomUX˙Y=
36 ndmfv ¬XYdomUUXY=
37 36 adantl φ¬XYdomUUXY=
38 35 37 eqtr4d φ¬XYdomUX˙Y=UXY
39 28 38 pm2.61dan φX˙Y=UXY