Metamath Proof Explorer


Theorem joincom

Description: The join of a poset is commutative. (The antecedent <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ i.e., "the joins exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses joincom.b
|- B = ( Base ` K )
joincom.j
|- .\/ = ( join ` K )
Assertion joincom
|- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) )

Proof

Step Hyp Ref Expression
1 joincom.b
 |-  B = ( Base ` K )
2 joincom.j
 |-  .\/ = ( join ` K )
3 1 2 joincomALT
 |-  ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) )
4 3 adantr
 |-  ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) )