Metamath Proof Explorer


Theorem islat

Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses islat.b B=BaseK
islat.j ˙=joinK
islat.m ˙=meetK
Assertion islat KLatKPosetdom˙=B×Bdom˙=B×B

Proof

Step Hyp Ref Expression
1 islat.b B=BaseK
2 islat.j ˙=joinK
3 islat.m ˙=meetK
4 fveq2 l=Kjoinl=joinK
5 4 2 eqtr4di l=Kjoinl=˙
6 5 dmeqd l=Kdomjoinl=dom˙
7 fveq2 l=KBasel=BaseK
8 7 1 eqtr4di l=KBasel=B
9 8 sqxpeqd l=KBasel×Basel=B×B
10 6 9 eqeq12d l=Kdomjoinl=Basel×Baseldom˙=B×B
11 fveq2 l=Kmeetl=meetK
12 11 3 eqtr4di l=Kmeetl=˙
13 12 dmeqd l=Kdommeetl=dom˙
14 13 9 eqeq12d l=Kdommeetl=Basel×Baseldom˙=B×B
15 10 14 anbi12d l=Kdomjoinl=Basel×Baseldommeetl=Basel×Baseldom˙=B×Bdom˙=B×B
16 df-lat Lat=lPoset|domjoinl=Basel×Baseldommeetl=Basel×Basel
17 15 16 elrab2 KLatKPosetdom˙=B×Bdom˙=B×B