Metamath Proof Explorer


Definition df-lat

Description: Define the class of all lattices. A lattice is a poset in which the join and meet of any two elements always exists. (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)

Ref Expression
Assertion df-lat Lat=pPoset|domjoinp=Basep×Basepdommeetp=Basep×Basep

Detailed syntax breakdown

Step Hyp Ref Expression
0 clat classLat
1 vp setvarp
2 cpo classPoset
3 cjn classjoin
4 1 cv setvarp
5 4 3 cfv classjoinp
6 5 cdm classdomjoinp
7 cbs classBase
8 4 7 cfv classBasep
9 8 8 cxp classBasep×Basep
10 6 9 wceq wffdomjoinp=Basep×Basep
11 cmee classmeet
12 4 11 cfv classmeetp
13 12 cdm classdommeetp
14 13 9 wceq wffdommeetp=Basep×Basep
15 10 14 wa wffdomjoinp=Basep×Basepdommeetp=Basep×Basep
16 15 1 2 crab classpPoset|domjoinp=Basep×Basepdommeetp=Basep×Basep
17 0 16 wceq wffLat=pPoset|domjoinp=Basep×Basepdommeetp=Basep×Basep