| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clat |
|- Lat |
| 1 |
|
vp |
|- p |
| 2 |
|
cpo |
|- Poset |
| 3 |
|
cjn |
|- join |
| 4 |
1
|
cv |
|- p |
| 5 |
4 3
|
cfv |
|- ( join ` p ) |
| 6 |
5
|
cdm |
|- dom ( join ` p ) |
| 7 |
|
cbs |
|- Base |
| 8 |
4 7
|
cfv |
|- ( Base ` p ) |
| 9 |
8 8
|
cxp |
|- ( ( Base ` p ) X. ( Base ` p ) ) |
| 10 |
6 9
|
wceq |
|- dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) |
| 11 |
|
cmee |
|- meet |
| 12 |
4 11
|
cfv |
|- ( meet ` p ) |
| 13 |
12
|
cdm |
|- dom ( meet ` p ) |
| 14 |
13 9
|
wceq |
|- dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) |
| 15 |
10 14
|
wa |
|- ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) ) |
| 16 |
15 1 2
|
crab |
|- { p e. Poset | ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) ) } |
| 17 |
0 16
|
wceq |
|- Lat = { p e. Poset | ( dom ( join ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) /\ dom ( meet ` p ) = ( ( Base ` p ) X. ( Base ` p ) ) ) } |