Step |
Hyp |
Ref |
Expression |
1 |
|
latjcom.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latjcom.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
5 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
6 |
1 2 5
|
islat |
⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ( meet ‘ 𝐾 ) = ( 𝐵 × 𝐵 ) ) ) ) |
7 |
|
simprl |
⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ( meet ‘ 𝐾 ) = ( 𝐵 × 𝐵 ) ) ) → dom ∨ = ( 𝐵 × 𝐵 ) ) |
8 |
6 7
|
sylbi |
⊢ ( 𝐾 ∈ Lat → dom ∨ = ( 𝐵 × 𝐵 ) ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → dom ∨ = ( 𝐵 × 𝐵 ) ) |
10 |
4 9
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
11 |
|
opelxpi |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 〈 𝑌 , 𝑋 〉 ∈ ( 𝐵 × 𝐵 ) ) |
12 |
11
|
ancoms |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑌 , 𝑋 〉 ∈ ( 𝐵 × 𝐵 ) ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑌 , 𝑋 〉 ∈ ( 𝐵 × 𝐵 ) ) |
14 |
13 9
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) |
15 |
10 14
|
jca |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) ) |
16 |
|
latpos |
⊢ ( 𝐾 ∈ Lat → 𝐾 ∈ Poset ) |
17 |
1 2
|
joincom |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
18 |
16 17
|
syl3anl1 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑌 , 𝑋 〉 ∈ dom ∨ ) ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
19 |
15 18
|
mpdan |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |