Metamath Proof Explorer


Theorem latjcom

Description: The join of a lattice commutes. ( chjcom analog.) (Contributed by NM, 16-Sep-2011)

Ref Expression
Hypotheses latjcom.b 𝐵 = ( Base ‘ 𝐾 )
latjcom.j = ( join ‘ 𝐾 )
Assertion latjcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )

Proof

Step Hyp Ref Expression
1 latjcom.b 𝐵 = ( Base ‘ 𝐾 )
2 latjcom.j = ( join ‘ 𝐾 )
3 opelxpi ( ( 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐵 × 𝐵 ) )
4 3 3adant1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐵 × 𝐵 ) )
5 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
6 1 2 5 islat ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom = ( 𝐵 × 𝐵 ) ∧ dom ( meet ‘ 𝐾 ) = ( 𝐵 × 𝐵 ) ) ) )
7 simprl ( ( 𝐾 ∈ Poset ∧ ( dom = ( 𝐵 × 𝐵 ) ∧ dom ( meet ‘ 𝐾 ) = ( 𝐵 × 𝐵 ) ) ) → dom = ( 𝐵 × 𝐵 ) )
8 6 7 sylbi ( 𝐾 ∈ Lat → dom = ( 𝐵 × 𝐵 ) )
9 8 3ad2ant1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → dom = ( 𝐵 × 𝐵 ) )
10 4 9 eleqtrrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
11 opelxpi ( ( 𝑌𝐵𝑋𝐵 ) → ⟨ 𝑌 , 𝑋 ⟩ ∈ ( 𝐵 × 𝐵 ) )
12 11 ancoms ( ( 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑌 , 𝑋 ⟩ ∈ ( 𝐵 × 𝐵 ) )
13 12 3adant1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑌 , 𝑋 ⟩ ∈ ( 𝐵 × 𝐵 ) )
14 13 9 eleqtrrd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ⟨ 𝑌 , 𝑋 ⟩ ∈ dom )
15 10 14 jca ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ∧ ⟨ 𝑌 , 𝑋 ⟩ ∈ dom ) )
16 latpos ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )
17 1 2 joincom ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ∧ ⟨ 𝑌 , 𝑋 ⟩ ∈ dom ) ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
18 16 17 syl3anl1 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ∧ ⟨ 𝑌 , 𝑋 ⟩ ∈ dom ) ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )
19 15 18 mpdan ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑌 𝑋 ) )