| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latjcom.b |
|- B = ( Base ` K ) |
| 2 |
|
latjcom.j |
|- .\/ = ( join ` K ) |
| 3 |
|
opelxpi |
|- ( ( X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
| 4 |
3
|
3adant1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
| 5 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 6 |
1 2 5
|
islat |
|- ( K e. Lat <-> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ( meet ` K ) = ( B X. B ) ) ) ) |
| 7 |
|
simprl |
|- ( ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ( meet ` K ) = ( B X. B ) ) ) -> dom .\/ = ( B X. B ) ) |
| 8 |
6 7
|
sylbi |
|- ( K e. Lat -> dom .\/ = ( B X. B ) ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> dom .\/ = ( B X. B ) ) |
| 10 |
4 9
|
eleqtrrd |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. dom .\/ ) |
| 11 |
|
opelxpi |
|- ( ( Y e. B /\ X e. B ) -> <. Y , X >. e. ( B X. B ) ) |
| 12 |
11
|
ancoms |
|- ( ( X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) |
| 13 |
12
|
3adant1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) |
| 14 |
13 9
|
eleqtrrd |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. dom .\/ ) |
| 15 |
10 14
|
jca |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) |
| 16 |
|
latpos |
|- ( K e. Lat -> K e. Poset ) |
| 17 |
1 2
|
joincom |
|- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| 18 |
16 17
|
syl3anl1 |
|- ( ( ( K e. Lat /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| 19 |
15 18
|
mpdan |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |