Metamath Proof Explorer


Theorem hlatjcl

Description: Closure of join operation. Frequently-used special case of latjcl for atoms. (Contributed by NM, 15-Jun-2012)

Ref Expression
Hypotheses hlatjcl.b
|- B = ( Base ` K )
hlatjcl.j
|- .\/ = ( join ` K )
hlatjcl.a
|- A = ( Atoms ` K )
Assertion hlatjcl
|- ( ( K e. HL /\ X e. A /\ Y e. A ) -> ( X .\/ Y ) e. B )

Proof

Step Hyp Ref Expression
1 hlatjcl.b
 |-  B = ( Base ` K )
2 hlatjcl.j
 |-  .\/ = ( join ` K )
3 hlatjcl.a
 |-  A = ( Atoms ` K )
4 hllat
 |-  ( K e. HL -> K e. Lat )
5 1 3 atbase
 |-  ( X e. A -> X e. B )
6 1 3 atbase
 |-  ( Y e. A -> Y e. B )
7 1 2 latjcl
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B )
8 4 5 6 7 syl3an
 |-  ( ( K e. HL /\ X e. A /\ Y e. A ) -> ( X .\/ Y ) e. B )