Metamath Proof Explorer


Theorem 3brtr3d

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999)

Ref Expression
Hypotheses 3brtr3d.1 ( 𝜑𝐴 𝑅 𝐵 )
3brtr3d.2 ( 𝜑𝐴 = 𝐶 )
3brtr3d.3 ( 𝜑𝐵 = 𝐷 )
Assertion 3brtr3d ( 𝜑𝐶 𝑅 𝐷 )

Proof

Step Hyp Ref Expression
1 3brtr3d.1 ( 𝜑𝐴 𝑅 𝐵 )
2 3brtr3d.2 ( 𝜑𝐴 = 𝐶 )
3 3brtr3d.3 ( 𝜑𝐵 = 𝐷 )
4 2 3 breq12d ( 𝜑 → ( 𝐴 𝑅 𝐵𝐶 𝑅 𝐷 ) )
5 1 4 mpbid ( 𝜑𝐶 𝑅 𝐷 )