Metamath Proof Explorer


Theorem latjle12

Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. ( chlub analog.) (Contributed by NM, 17-Sep-2011)

Ref Expression
Hypotheses latlej.b 𝐵 = ( Base ‘ 𝐾 )
latlej.l = ( le ‘ 𝐾 )
latlej.j = ( join ‘ 𝐾 )
Assertion latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑍𝑌 𝑍 ) ↔ ( 𝑋 𝑌 ) 𝑍 ) )

Proof

Step Hyp Ref Expression
1 latlej.b 𝐵 = ( Base ‘ 𝐾 )
2 latlej.l = ( le ‘ 𝐾 )
3 latlej.j = ( join ‘ 𝐾 )
4 latpos ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )
5 4 adantr ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Poset )
6 simpr1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
7 simpr2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
8 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
9 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
10 simpl ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Lat )
11 1 3 9 10 6 7 latcl2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ∧ ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ( meet ‘ 𝐾 ) ) )
12 11 simpld ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
13 1 2 3 5 6 7 8 12 joinle ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑍𝑌 𝑍 ) ↔ ( 𝑋 𝑌 ) 𝑍 ) )