Step |
Hyp |
Ref |
Expression |
1 |
|
latlej.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latlej.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
latlej.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
latpos |
⊢ ( 𝐾 ∈ Lat → 𝐾 ∈ Poset ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Poset ) |
6 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
8 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
10 |
|
simpl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
11 |
1 3 9 10 6 7
|
latcl2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ∧ 〈 𝑋 , 𝑌 〉 ∈ dom ( meet ‘ 𝐾 ) ) ) |
12 |
11
|
simpld |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 〈 𝑋 , 𝑌 〉 ∈ dom ∨ ) |
13 |
1 2 3 5 6 7 8 12
|
joinle |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍 ) ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑍 ) ) |