| Step | Hyp | Ref | Expression | 
						
							| 1 |  | joinle.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | joinle.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | joinle.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | joinle.k | ⊢ ( 𝜑  →  𝐾  ∈  Poset ) | 
						
							| 5 |  | joinle.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | joinle.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | joinle.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 8 |  | joinle.e | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  dom   ∨  ) | 
						
							| 9 |  | breq2 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑋  ≤  𝑧  ↔  𝑋  ≤  𝑍 ) ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑌  ≤  𝑧  ↔  𝑌  ≤  𝑍 ) ) | 
						
							| 11 | 9 10 | anbi12d | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  ↔  ( 𝑋  ≤  𝑍  ∧  𝑌  ≤  𝑍 ) ) ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑋  ∨  𝑌 )  ≤  𝑧  ↔  ( 𝑋  ∨  𝑌 )  ≤  𝑍 ) ) | 
						
							| 13 | 11 12 | imbi12d | ⊢ ( 𝑧  =  𝑍  →  ( ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  ( 𝑋  ∨  𝑌 )  ≤  𝑧 )  ↔  ( ( 𝑋  ≤  𝑍  ∧  𝑌  ≤  𝑍 )  →  ( 𝑋  ∨  𝑌 )  ≤  𝑍 ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 8 | joinlem | ⊢ ( 𝜑  →  ( ( 𝑋  ≤  ( 𝑋  ∨  𝑌 )  ∧  𝑌  ≤  ( 𝑋  ∨  𝑌 ) )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  ( 𝑋  ∨  𝑌 )  ≤  𝑧 ) ) ) | 
						
							| 15 | 14 | simprd | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  ( 𝑋  ∨  𝑌 )  ≤  𝑧 ) ) | 
						
							| 16 | 13 15 7 | rspcdva | ⊢ ( 𝜑  →  ( ( 𝑋  ≤  𝑍  ∧  𝑌  ≤  𝑍 )  →  ( 𝑋  ∨  𝑌 )  ≤  𝑍 ) ) | 
						
							| 17 | 1 2 3 4 5 6 8 | lejoin1 | ⊢ ( 𝜑  →  𝑋  ≤  ( 𝑋  ∨  𝑌 ) ) | 
						
							| 18 | 1 3 4 5 6 8 | joincl | ⊢ ( 𝜑  →  ( 𝑋  ∨  𝑌 )  ∈  𝐵 ) | 
						
							| 19 | 1 2 | postr | ⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝑋  ∨  𝑌 )  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  ≤  ( 𝑋  ∨  𝑌 )  ∧  ( 𝑋  ∨  𝑌 )  ≤  𝑍 )  →  𝑋  ≤  𝑍 ) ) | 
						
							| 20 | 4 5 18 7 19 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑋  ≤  ( 𝑋  ∨  𝑌 )  ∧  ( 𝑋  ∨  𝑌 )  ≤  𝑍 )  →  𝑋  ≤  𝑍 ) ) | 
						
							| 21 | 17 20 | mpand | ⊢ ( 𝜑  →  ( ( 𝑋  ∨  𝑌 )  ≤  𝑍  →  𝑋  ≤  𝑍 ) ) | 
						
							| 22 | 1 2 3 4 5 6 8 | lejoin2 | ⊢ ( 𝜑  →  𝑌  ≤  ( 𝑋  ∨  𝑌 ) ) | 
						
							| 23 | 1 2 | postr | ⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑌  ∈  𝐵  ∧  ( 𝑋  ∨  𝑌 )  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑌  ≤  ( 𝑋  ∨  𝑌 )  ∧  ( 𝑋  ∨  𝑌 )  ≤  𝑍 )  →  𝑌  ≤  𝑍 ) ) | 
						
							| 24 | 4 6 18 7 23 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑌  ≤  ( 𝑋  ∨  𝑌 )  ∧  ( 𝑋  ∨  𝑌 )  ≤  𝑍 )  →  𝑌  ≤  𝑍 ) ) | 
						
							| 25 | 22 24 | mpand | ⊢ ( 𝜑  →  ( ( 𝑋  ∨  𝑌 )  ≤  𝑍  →  𝑌  ≤  𝑍 ) ) | 
						
							| 26 | 21 25 | jcad | ⊢ ( 𝜑  →  ( ( 𝑋  ∨  𝑌 )  ≤  𝑍  →  ( 𝑋  ≤  𝑍  ∧  𝑌  ≤  𝑍 ) ) ) | 
						
							| 27 | 16 26 | impbid | ⊢ ( 𝜑  →  ( ( 𝑋  ≤  𝑍  ∧  𝑌  ≤  𝑍 )  ↔  ( 𝑋  ∨  𝑌 )  ≤  𝑍 ) ) |