Metamath Proof Explorer
Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011)
|
|
Ref |
Expression |
|
Hypotheses |
posi.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
posi.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
Assertion |
postr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
posi.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
posi.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
1 2
|
posi |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) |
4 |
3
|
simp3d |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |