Metamath Proof Explorer


Theorem postr

Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011)

Ref Expression
Hypotheses posi.b 𝐵 = ( Base ‘ 𝐾 )
posi.l = ( le ‘ 𝐾 )
Assertion postr ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) )

Proof

Step Hyp Ref Expression
1 posi.b 𝐵 = ( Base ‘ 𝐾 )
2 posi.l = ( le ‘ 𝐾 )
3 1 2 posi ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) ) )
4 3 simp3d ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) )