Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | posi.b | |- B = ( Base ` K ) |
|
posi.l | |- .<_ = ( le ` K ) |
||
Assertion | postr | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posi.b | |- B = ( Base ` K ) |
|
2 | posi.l | |- .<_ = ( le ` K ) |
|
3 | 1 2 | posi | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ X /\ ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) /\ ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) ) |
4 | 3 | simp3d | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) |