Metamath Proof Explorer
		
		
		
		Description:  A join's second argument is less than or equal to the join.
       (Contributed by NM, 16-Sep-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | joinval2.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
					
						|  |  | joinval2.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
					
						|  |  | joinval2.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
					
						|  |  | joinval2.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
					
						|  |  | joinval2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
					
						|  |  | joinval2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
					
						|  |  | joinlem.e | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  dom   ∨  ) | 
				
					|  | Assertion | lejoin2 | ⊢  ( 𝜑  →  𝑌  ≤  ( 𝑋  ∨  𝑌 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | joinval2.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | joinval2.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | joinval2.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | joinval2.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
						
							| 5 |  | joinval2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | joinval2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | joinlem.e | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  dom   ∨  ) | 
						
							| 8 | 1 2 3 4 5 6 7 | joinlem | ⊢ ( 𝜑  →  ( ( 𝑋  ≤  ( 𝑋  ∨  𝑌 )  ∧  𝑌  ≤  ( 𝑋  ∨  𝑌 ) )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑋  ≤  𝑧  ∧  𝑌  ≤  𝑧 )  →  ( 𝑋  ∨  𝑌 )  ≤  𝑧 ) ) ) | 
						
							| 9 | 8 | simplrd | ⊢ ( 𝜑  →  𝑌  ≤  ( 𝑋  ∨  𝑌 ) ) |