Metamath Proof Explorer


Theorem latcl2

Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018)

Ref Expression
Hypotheses latcl2.b 𝐵 = ( Base ‘ 𝐾 )
latcl2.j = ( join ‘ 𝐾 )
latcl2.m = ( meet ‘ 𝐾 )
latcl2.k ( 𝜑𝐾 ∈ Lat )
latcl2.x ( 𝜑𝑋𝐵 )
latcl2.y ( 𝜑𝑌𝐵 )
Assertion latcl2 ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ∧ ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ) )

Proof

Step Hyp Ref Expression
1 latcl2.b 𝐵 = ( Base ‘ 𝐾 )
2 latcl2.j = ( join ‘ 𝐾 )
3 latcl2.m = ( meet ‘ 𝐾 )
4 latcl2.k ( 𝜑𝐾 ∈ Lat )
5 latcl2.x ( 𝜑𝑋𝐵 )
6 latcl2.y ( 𝜑𝑌𝐵 )
7 5 6 opelxpd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐵 × 𝐵 ) )
8 1 2 3 islat ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom = ( 𝐵 × 𝐵 ) ∧ dom = ( 𝐵 × 𝐵 ) ) ) )
9 4 8 sylib ( 𝜑 → ( 𝐾 ∈ Poset ∧ ( dom = ( 𝐵 × 𝐵 ) ∧ dom = ( 𝐵 × 𝐵 ) ) ) )
10 9 simprld ( 𝜑 → dom = ( 𝐵 × 𝐵 ) )
11 7 10 eleqtrrd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
12 9 simprrd ( 𝜑 → dom = ( 𝐵 × 𝐵 ) )
13 7 12 eleqtrrd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
14 11 13 jca ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ∧ ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ) )