Metamath Proof Explorer


Theorem latcl2

Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018)

Ref Expression
Hypotheses latcl2.b B=BaseK
latcl2.j ˙=joinK
latcl2.m ˙=meetK
latcl2.k φKLat
latcl2.x φXB
latcl2.y φYB
Assertion latcl2 φXYdom˙XYdom˙

Proof

Step Hyp Ref Expression
1 latcl2.b B=BaseK
2 latcl2.j ˙=joinK
3 latcl2.m ˙=meetK
4 latcl2.k φKLat
5 latcl2.x φXB
6 latcl2.y φYB
7 5 6 opelxpd φXYB×B
8 1 2 3 islat KLatKPosetdom˙=B×Bdom˙=B×B
9 4 8 sylib φKPosetdom˙=B×Bdom˙=B×B
10 9 simprld φdom˙=B×B
11 7 10 eleqtrrd φXYdom˙
12 9 simprrd φdom˙=B×B
13 7 12 eleqtrrd φXYdom˙
14 11 13 jca φXYdom˙XYdom˙