Metamath Proof Explorer


Theorem latjle12

Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. ( chlub analog.) (Contributed by NM, 17-Sep-2011)

Ref Expression
Hypotheses latlej.b B = Base K
latlej.l ˙ = K
latlej.j ˙ = join K
Assertion latjle12 K Lat X B Y B Z B X ˙ Z Y ˙ Z X ˙ Y ˙ Z

Proof

Step Hyp Ref Expression
1 latlej.b B = Base K
2 latlej.l ˙ = K
3 latlej.j ˙ = join K
4 latpos K Lat K Poset
5 4 adantr K Lat X B Y B Z B K Poset
6 simpr1 K Lat X B Y B Z B X B
7 simpr2 K Lat X B Y B Z B Y B
8 simpr3 K Lat X B Y B Z B Z B
9 eqid meet K = meet K
10 simpl K Lat X B Y B Z B K Lat
11 1 3 9 10 6 7 latcl2 K Lat X B Y B Z B X Y dom ˙ X Y dom meet K
12 11 simpld K Lat X B Y B Z B X Y dom ˙
13 1 2 3 5 6 7 8 12 joinle K Lat X B Y B Z B X ˙ Z Y ˙ Z X ˙ Y ˙ Z