Metamath Proof Explorer


Theorem latleeqj1

Description: "Less than or equal to" in terms of join. ( chlejb1 analog.) (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses latlej.b B=BaseK
latlej.l ˙=K
latlej.j ˙=joinK
Assertion latleeqj1 KLatXBYBX˙YX˙Y=Y

Proof

Step Hyp Ref Expression
1 latlej.b B=BaseK
2 latlej.l ˙=K
3 latlej.j ˙=joinK
4 1 2 latref KLatYBY˙Y
5 4 3adant2 KLatXBYBY˙Y
6 5 biantrud KLatXBYBX˙YX˙YY˙Y
7 simp1 KLatXBYBKLat
8 simp2 KLatXBYBXB
9 simp3 KLatXBYBYB
10 1 2 3 latjle12 KLatXBYBYBX˙YY˙YX˙Y˙Y
11 7 8 9 9 10 syl13anc KLatXBYBX˙YY˙YX˙Y˙Y
12 6 11 bitrd KLatXBYBX˙YX˙Y˙Y
13 1 2 3 latlej2 KLatXBYBY˙X˙Y
14 13 biantrud KLatXBYBX˙Y˙YX˙Y˙YY˙X˙Y
15 12 14 bitrd KLatXBYBX˙YX˙Y˙YY˙X˙Y
16 latpos KLatKPoset
17 16 3ad2ant1 KLatXBYBKPoset
18 1 3 latjcl KLatXBYBX˙YB
19 1 2 posasymb KPosetX˙YBYBX˙Y˙YY˙X˙YX˙Y=Y
20 17 18 9 19 syl3anc KLatXBYBX˙Y˙YY˙X˙YX˙Y=Y
21 15 20 bitrd KLatXBYBX˙YX˙Y=Y