Metamath Proof Explorer


Theorem latleeqj2

Description: "Less than or equal to" in terms of join. ( chlejb2 analog.) (Contributed by NM, 14-Nov-2011)

Ref Expression
Hypotheses latlej.b B=BaseK
latlej.l ˙=K
latlej.j ˙=joinK
Assertion latleeqj2 KLatXBYBX˙YY˙X=Y

Proof

Step Hyp Ref Expression
1 latlej.b B=BaseK
2 latlej.l ˙=K
3 latlej.j ˙=joinK
4 1 2 3 latleeqj1 KLatXBYBX˙YX˙Y=Y
5 1 3 latjcom KLatXBYBX˙Y=Y˙X
6 5 eqeq1d KLatXBYBX˙Y=YY˙X=Y
7 4 6 bitrd KLatXBYBX˙YY˙X=Y