Metamath Proof Explorer


Theorem chlejb2

Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion chlejb2 ACBCABBA=B

Proof

Step Hyp Ref Expression
1 chlejb1 ACBCABAB=B
2 chjcom ACBCAB=BA
3 2 eqeq1d ACBCAB=BBA=B
4 1 3 bitrd ACBCABBA=B