Metamath Proof Explorer


Definition df-chj

Description: Define Hilbert lattice join. See chjval for its value and chjcl for its closure law. Note that we define it over all Hilbert space subsets to allow proving more general theorems. Even for general subsets the join belongs to CH ; see sshjcl . (Contributed by NM, 1-Nov-2000) (New usage is discouraged.)

Ref Expression
Assertion df-chj =x𝒫,y𝒫xy

Detailed syntax breakdown

Step Hyp Ref Expression
0 chj class
1 vx setvarx
2 chba class
3 2 cpw class𝒫
4 vy setvary
5 cort class
6 1 cv setvarx
7 4 cv setvary
8 6 7 cun classxy
9 8 5 cfv classxy
10 9 5 cfv classxy
11 1 4 3 3 10 cmpo classx𝒫,y𝒫xy
12 0 11 wceq wff=x𝒫,y𝒫xy