| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3at.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
3at.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
3at.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝐾 ∈ HL ) |
| 5 |
|
simp131 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑆 ∈ 𝐴 ) |
| 6 |
|
simp132 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑇 ∈ 𝐴 ) |
| 7 |
|
simp133 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑈 ∈ 𝐴 ) |
| 8 |
2 3
|
hlatjass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) = ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) |
| 9 |
4 5 6 7 8
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) = ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) |
| 10 |
|
simp121 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑃 ∈ 𝐴 ) |
| 11 |
|
simp122 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑄 ∈ 𝐴 ) |
| 12 |
|
simp123 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑅 ∈ 𝐴 ) |
| 13 |
2 3
|
hlatjass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
| 14 |
4 10 11 12 13
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
| 15 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
| 16 |
14 15
|
eqbrtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
| 17 |
4
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝐾 ∈ Lat ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 19 |
18 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
10 19
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
18 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
4 11 12 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
18 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
4 5 6 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 25 |
18 3
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
| 26 |
7 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
18 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
17 24 26 27
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
18 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ↔ ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ) |
| 30 |
17 20 22 28 29
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ↔ ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ) |
| 31 |
16 30
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ) |
| 32 |
31
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑃 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
| 33 |
32 9
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑃 ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) |
| 34 |
18 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 35 |
4 6 7 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 36 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) |
| 37 |
18 1 2 3
|
hlexchb2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( 𝑃 ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ↔ ( 𝑃 ∨ ( 𝑇 ∨ 𝑈 ) ) = ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) ) |
| 38 |
4 10 5 35 36 37
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ≤ ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ↔ ( 𝑃 ∨ ( 𝑇 ∨ 𝑈 ) ) = ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) ) |
| 39 |
33 38
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ ( 𝑇 ∨ 𝑈 ) ) = ( 𝑆 ∨ ( 𝑇 ∨ 𝑈 ) ) ) |
| 40 |
2 3
|
hlatj12 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( 𝑇 ∨ 𝑈 ) ) = ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
| 41 |
4 10 6 7 40
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ ( 𝑇 ∨ 𝑈 ) ) = ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
| 42 |
9 39 41
|
3eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) = ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
| 43 |
2 3
|
hlatj12 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) = ( 𝑄 ∨ ( 𝑃 ∨ 𝑅 ) ) ) |
| 44 |
4 10 11 12 43
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) = ( 𝑄 ∨ ( 𝑃 ∨ 𝑅 ) ) ) |
| 45 |
16 44 42
|
3brtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑄 ∨ ( 𝑃 ∨ 𝑅 ) ) ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
| 46 |
18 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 47 |
11 46
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 48 |
18 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 49 |
4 10 12 48
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 50 |
18 3
|
atbase |
⊢ ( 𝑇 ∈ 𝐴 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
| 51 |
6 50
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
| 52 |
18 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 53 |
4 10 7 52
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 54 |
18 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 55 |
17 51 53 54
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 56 |
18 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ∧ ( 𝑃 ∨ 𝑅 ) ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) ↔ ( 𝑄 ∨ ( 𝑃 ∨ 𝑅 ) ) ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) ) |
| 57 |
17 47 49 55 56
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑄 ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ∧ ( 𝑃 ∨ 𝑅 ) ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) ↔ ( 𝑄 ∨ ( 𝑃 ∨ 𝑅 ) ) ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) ) |
| 58 |
45 57
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑄 ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ∧ ( 𝑃 ∨ 𝑅 ) ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) ) |
| 59 |
58
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑄 ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
| 60 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) |
| 61 |
18 1 2 3
|
hlexchb2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) → ( 𝑄 ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ↔ ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) = ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) ) |
| 62 |
4 11 6 53 60 61
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑄 ≤ ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ↔ ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) = ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) ) |
| 63 |
59 62
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) = ( 𝑇 ∨ ( 𝑃 ∨ 𝑈 ) ) ) |
| 64 |
18 2
|
latj13 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) = ( 𝑈 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 65 |
17 47 20 26 64
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑄 ∨ ( 𝑃 ∨ 𝑈 ) ) = ( 𝑈 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 66 |
42 63 65
|
3eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) = ( 𝑈 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 67 |
18 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 68 |
4 10 11 67
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 69 |
18 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 70 |
12 69
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 71 |
18 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∧ 𝑅 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ) |
| 72 |
17 68 70 28 71
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∧ 𝑅 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ) |
| 73 |
15 72
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∧ 𝑅 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) ) |
| 74 |
73
|
simprd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑅 ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |
| 75 |
74 66
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → 𝑅 ≤ ( 𝑈 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 76 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 77 |
18 1 2 3
|
hlexchb2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑅 ≤ ( 𝑈 ∨ ( 𝑃 ∨ 𝑄 ) ) ↔ ( 𝑅 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑈 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 78 |
4 12 7 68 76 77
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑅 ≤ ( 𝑈 ∨ ( 𝑃 ∨ 𝑄 ) ) ↔ ( 𝑅 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑈 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 79 |
75 78
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑅 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑈 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 80 |
18 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑅 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
| 81 |
17 70 68 80
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( 𝑅 ∨ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
| 82 |
66 79 81
|
3eqtr2rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑃 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ) |