Metamath Proof Explorer


Theorem 3atlem7

Description: Lemma for 3at . (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses 3at.l ˙=K
3at.j ˙=joinK
3at.a A=AtomsK
Assertion 3atlem7 KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U

Proof

Step Hyp Ref Expression
1 3at.l ˙=K
2 3at.j ˙=joinK
3 3at.a A=AtomsK
4 simpl1 KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UQ˙P˙UKHLPAQARASATAUA
5 simpl2l KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UQ˙P˙U¬R˙P˙Q
6 simpl2r KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UQ˙P˙UPQ
7 simpr KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UQ˙P˙UQ˙P˙U
8 simpl3 KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UQ˙P˙UP˙Q˙R˙S˙T˙U
9 1 2 3 3atlem6 KHLPAQARASATAUA¬R˙P˙QPQQ˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U
10 4 5 6 7 8 9 syl131anc KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UQ˙P˙UP˙Q˙R=S˙T˙U
11 simpl1 KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙U¬Q˙P˙UKHLPAQARASATAUA
12 simpl2l KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙U¬Q˙P˙U¬R˙P˙Q
13 simpl2r KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙U¬Q˙P˙UPQ
14 simpr KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙U¬Q˙P˙U¬Q˙P˙U
15 simpl3 KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙U
16 1 2 3 3atlem5 KHLPAQARASATAUA¬R˙P˙QPQ¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U
17 11 12 13 14 15 16 syl131anc KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙U¬Q˙P˙UP˙Q˙R=S˙T˙U
18 10 17 pm2.61dan KHLPAQARASATAUA¬R˙P˙QPQP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U